Пена. История вопроса. Изолирующие огнетушащие вещества

Пена. История вопроса. Изолирующие огнетушащие вещества

Тема Назначение виды и устройство оборудования для получения воздушно-механической пены

Вид занятия : классно-групповое

Отводимое время : 1 учебный час.

Литература: учебник «Пожарная техника»

Развернутый план занятий.

Пенообразователи общего назначения изготовляются на основе дешевого и доступного сырья. Используются для получения пены и растворов смачивателей.

Предназначены для тушения пожаров нефтепродуктов, дерева, ткани, бумаги, торфа, хлопка, каучука, пластмасс и т.д. Служат для получения пены низкой, средней кратности и высокой.

К ним относятся:

  • ТЭАС – А

Преобразователи целевого назначения

Пенообразователи целевого назначения используются для получения пены, при тушении пожаров нефтепродуктов и различных классов горючих жидкостей наиболее пожароопасных объектов, а также для применения с морской водой, при низкой температуре и других особых условиях. Некоторые из них изготавливаются на основе дефицитного дорогостоящего сырья.

К ним относятся:

    Пленкообразующий

  • Универсальный

Физико-химические и огнетушащие свойства пен.

Огнетушащие пены разделяются на химическую и воздушно - механическую.

Химическая пена (кратность до 6)получают в результате химической реакции между кислой и щелочной частями:

Fe2(S04)3+6NaHC03-)-3Na2S04+2Fe(OH)3+6C02

H 2 S 04+2 NaHC 03-> Na 2 S 04+2 C 02+2 H 20

Воздушно - механическая пена получается путем механического перемещения трех компонентов: воды, пенообразователя и воздуха.

Согласно ГОСТ 12.1.114-82 ВМП подразделяется на три вида:

    ВМП низкой кратности К<20 (для расчетов К=10) ВМП

    средней кратности 20^К^200 (для расчетов К=100)

    ВМП высокой кратности К>200 (для расчетов К=1000)

Физико-химические и огнетушащие свойства пен и область их применения .

Огнетушащие пены представляют собой совокупность пузырьков ,

состоящих из

жидкостной оболочки, заполненной воздухом или газами, т.е. пена - это

концентрированная эмульсия газа и в жидкости.

Химическая пена состоит на 80% С02 (углекислого газа) , 19,7% водного раствора и 0,3% пенообразующих веществ.

ВМП состоит из 83-99,6% воздуха и 0,4-17% водного раствора ПО.

Основными свойствами пен независимо от способа их получения являются следующие:

1. Кратность пены - это отношение объема пены к объему пенообразующей жидкости. Кратность зависит от типа, качества и концентрации ПО в воде, от конструкции пенного прибора, от напора перед распылителем и от температуры подсасываемого воздуха.

2. Стойкость пены - это способность противостоять разрушению в течении определенного времени. Стойкость пены - это время в течении которого пена разрушается на 50% первоначального объема. Стойкость зависит: от вида ПО, свойств и температуры веществ, с которыми она взаимодействует, способа подачи, высоты пенного слоя. т=3,8-18мин (САМПО - несколько часов)

3. Высокая теплоемкость - пена, разрушаясь, охлаждает горящие вещества (строительные конструкции, ЛВЖ и ГЖ) за счет имеющегося в ее структуре водного раствора пенообразователя.

4. Небольшая плотность 4-170 кг/м 3 . Плотность зависит от кратности пены, Пена плавает на поверхности жидкостей, не создает чрезмерной нагрузки на покрытия, исключает потерю устойчивости судна при тушении пожаров.

5. Низкая теплопроводность - она близка к теплопроводности неподвижных газов. Это позволяет использовать пену в качестве теплоизоляционного экрана от действия лучистой энергии.

6.Изолирующая способность - при тушении пеной, слой пены препятствует проникновению паров в зону горения и тепла из зоны горения к поверхности вещества.

7. Вязкост ь - способность пены к растеканию.

8. Дисперстность - степень измельчения т.е. размеры пузырьков. С увеличением дисперстности пены, растет время ее существования, вязкость и парогазонепроницаемость.

Способ получения пен и предназначение для пожаротушения:

    Пена низкой кратности – стволы СВЭ; СВПЭ; ОРТ-50 с насадкой – тушение хлопка и родственных веществ, так же применяется для тушения резина образных изделий и паралона.

    Пена средней кратности – ГПС-600; ГПС-800; ГПС – 2000 – тушение ЛВЖ.

    Пена высокой кратности - получается ТОЛЬКО при помощи пожарного дымососа. Тушение объемных пожаров (подвалы). В этой пене можно дышать .

Схемы боевого развертывания с подачей ВМП



Применение пены в качестве огнетушащего средства произвело фурор в области пожаротушения, а в частности при тушении легковоспламеняемых и горючих жидкостей. Хотя , этот вид огнетушащего средства не увенчались успехом, со временем, все поняли, на сколько эффективнее это средство по сравнению с другими.

Что такое пожарная пена

Если объяснять понятным языком то пожарная пена – это, по сути, обычные «мыльные» пузыри, которые получаются из специального пожарного пенообразователя при его разбавлении водой и последующем прохождении через пеногенераторы.

Как Вам уже стало понятно, основной составляющей пожарной пены является пожарный пенообразователь, который за счет поверхностно-активных веществ (ПАВ) имеет способность пениться в значительном количестве при малой концентрации.

ПАВ – за частую, являют собой органические или синтетические белковые соединения которые растворяются в воде.

Классификация пенообразователей и пен

В связи с разнообразностью легковоспламеняющихся и горючих жидкостей возникла необходимость разработки и усовершенствования пожарного пенообразователя для разнообразных целей пожаротушения.

Таким образом на сегодняшний день пенообразователи и пены классифицируются по назначению, структуре по химической природе поверхностно-активного вещества и по способу
образования:

по природе основного поверхностно-активного вещества:

  • протеиновые (белковые);
  • синтетические углеводородные;
  • фторсодержащие.

по способу образования:

  • химические (конденсационные);
  • воздушно-механические;
  • барботажные;
  • струйные.

по назначению:

  • общего назначения;
  • целевого назначения;
  • пленкообразующие.

Пены классифицируются следующим образом:

по структуре :

  • высокодисперсные;
  • грубодисперсные;

по кратности:

  • низкократные, пеноэмульсии;
  • средней кратности;
  • высокократные.

ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЁННЫХ ПЕНООБРАЗОВАТЕЛЕЙ

ПО-1 Водный раствор нейтрализованного керосинового кон­такта 84±3%, костный клей для стойкости пены 5 ± 1 % синтетический этиловый спирт или концентрированный этиленгликоль 11 ± 1 %. Температура замерзания не пре­вышает -8 °С. Является основным пенообразующим средством для получения воздушно-механической пены любой кратности.

При тушении нефтей и нефтепродуктов концентрация водного раствора ПО-1 принимается 6%. При тушении других веществ и материалов используют растворы с концентрацией 2 – 6 %.

ПО-3А Водный раствор смеси натриевых солей вторичных ал­килсульфатов. Содержит 26±1 % активного вещества. Температура замерзания не выше – 3°С. При примене­нии разбавляют водой в пропорции 1: 1 с использо­ванием дозирующей аппаратуры, рассчитанной на пено­образователь ПО-1. Для получения пены применяют водный раствор с концентрацией 4 – 6 %.
ПО-6К Изготовляют из кислого гудрона при сульфировании гидроочищенного керосина. Содержит 32 % активного вещества. Температура замерзания не выше -3°С. Для получения пены при тушении нефтепродуктов используют водный раствор с концентрацией 6 %. В других случаях концентрация водного раствора может быть меньше.
«Сампо» Состоит из синтетического поверхностно-активного вещества (20%), стабилизатора (15%), антифризной добавки (10%) и вещества, снижающего коррозионное действие состава (0,1 %). Температура застывания – 10°С. Для получения пены используют водный раствор с концентрацией 6 %. Применяют при тушении нефти, неполярных нефтепродуктов, резинотехнических изделий древесины, волокнистых материалов, в стационарны системах пожаротушения и для защиты технологических установок.

Влияние состава пенообразователя
 на свойства пены

Основные показатели, которые необходимо учитывать пожарным во время пожаротушения являются: назначение пенообразователя (общее, целевое или пленкообразующее) и кратность.

Направленность (назначение) пенообразователя

Пенообразователи целевого назначения способны вырабатывать пену, которая хорошо сохраняется на поверхности очага возгорания (бензина, нефти), то есть, может длительное время не разрушаться на открытом воздухе. Такие свойства пожарной пены создаются за счет того, что в состав пенообразователя входят несколько компонентов.

Также пенообразователи целевого назначения необходимы для тушения легковоспламеняющихся органических жидкостей растворимых в воде, например, спирта. За счет введение в состав пенообразователя некоторых полимеров, которые в свою очередь в последствие отделяют спирт от пены толстой полимерной пленкой.

К пенообразователям целевого назначения также можно отнести морозоустойчивые пенообразователи, соответственно они используются в регионах или климатических условиях с постоянно низкими температурами.

Универсальные и многоцелевые пенообразователи говорят сами за себя. По этому этот вид пенообразователя самый распространенные среди пожарных.

Пленкообразующие пенообразователи это особый вид пенообразователя который применяют при тушении возгораний углеводородного топлива (авиационное топливо, горючие газы и др.), а также во время подслойного тушения пожаров в резервуарах. За счет образования пленки на поверхности горючего он предотвращает повторное воспламенение.

Следующая важная характеристика пожарной пены это ее кратность.

Кратностью пены (К) называется отношение объема пены (V п) к объему жидкости в пене (V ж):

Так как пена это пузыри надутые воздухом, что является неустойчивой дисперсной системой, в которой, с момента образования, начинает протекать процесс переноса воздуха от пузырька к пузырьку в результате общее количество пузырьков и объем пены уменьшается, а также выделяется вода.

В зависимости от величины кратности пены разделяют на четыре группы:

  • пеноэмульсии, вода с смачивателем К<3
  • низкократные пены, 3 < К< 20;
  • пены средней кратности, 20 < К< 200;
  • пены высокой кратности, К > 200.

В пожаротушении используются все виды кратности пожарной пены. Получить различную кратность пены можно за счет разнообразных приборов и пеногенерирующих устройств (установок):

  • пеноэмульсии - соударением свободных струй раствора, 
для тушения пожаров нефти в амбарах;
  • низкократные пены - в пеногенераторах, в которых эжектируемый
воздух перемешивается с раствором пенообразователя – стволы СВП. ;


  • пена средней кратности - на металлических сетках эжекционных
 пеногенераторов – ;


  • пена высокой кратности - в генераторах с перфорированной поверхностью тонких металлических листов или на специальном оборудовании,
в результате принудительного наддува воздуха в пеногенератор от вентилятора – .


Кратность пены

3.17 кратность пены: Безразмерная величина, равная отношению объема пены к объему исходного раствора.

2.1.4. Кратность пены

2.1.4. Кратность пены - отношение объема пены к объему раствора пенообразователя, содержащегося в пене.

кратность пены - отношение объема пены к объему раствора пенообразователя, содержащегося в пене;

3.13. Кратность пены

2.6. Кратность пены - безразмерная величина, равная отношению объемов пены и раствора, содержащегося в пене.

3.8 кратность пены:

3.12. Кратность пены - безразмерная величина, равная отношению объемов пены и раствора, содержащегося в пене.

3.17 кратность пены : Безразмерная величина, равная отношению объема пены к объему водного раствора, содержащегося в пене.

3.10 кратность пены: Отношение объема пены к объему раствора ПО, содержащегося в пене.

3.4 кратность пены: Безразмерная величина, равная отношению объемов пены и исходного раствора пенообразователя, содержащегося в ней.

3.4 кратность пены: Безразмерная величина, равная отношению объемов пены и исходного раствора пенообразователя содержащегося в ней.

3.17 кратность пены: Безразмерная величина, равная отношению объема пены к объему раствора, содержащегося в пене.

Кратность пены

Кратность пены - отношение объема пены к объему раствора пенообразователя, содержащегося в ней. В зависимости от величины кратности пену подразделяют:

На пену низкой кратности (кратность не более 20);

Пену средней кратности (кратность от 21 до 200);

Пену высокой кратности (кратность более 200).

Кратность пены - отношение объема пены к объему раствора пенообразователя, содержащегося в ней. В зависимости от величины кратности пену подразделяют:

на пену низкой кратности (кратность не более 20);

пену средней кратности (кратность от 20 до 200);

пену высокой кратности (кратность более 200).

3.11 кратность пены: Отношение объема пены к объему раствора пенообразователя, содержащегося в пене (ГОСТ Р 50588).


. academic.ru . 2015 .

  • - – отношение начального объема пены к объему водного раствора пенообразователя (обычно <5). [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.] Рубрика термина: Легкие бетоны Рубрики энциклопедии:… … Энциклопедия терминов, определений и пояснений строительных материалов
  • ПЕНЫ - дисперсные системы с газовой дисперсной фазой и жидкой или твердой дисперсионной средой. П. обычно являются сравнительно грубодисперсными высококонцен трир системами (разб. системы типа газ жидкость наз. газовыми эмульсиями). Объемное содержание… … Химическая энциклопедия

    кратность огнетушащей пены - rus кратность (ж) огнетушащей пены eng expansion ratio (extinguishing foam) fra taux (m) de foisonnement deu Verschäumungszahl (f) spa coeficiente (m) de expansión … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

    Терминология ГОСТ Р 53290 2009: Техника пожарная. Установки пенного пожаротушения. Генераторы пены низкой кратности для подслойного тушения резервуаров. Общие технические требования. Методы испытаний оригинал документа: 3.3 высоконапорный… … Словарь-справочник терминов нормативно-технической документации

    Терминология НПБ 61 97: Пожарная техника. Установки пенного тушения. Генераторы пены низкой кратности для подслойного тушения резервуаров. Общие технические требования. Методы испытаний: Высоконапорный пеногенератор Устройство для получения… … Словарь-справочник терминов нормативно-технической документации

    Терминология Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо от остальной… … Словарь-справочник терминов нормативно-технической документации

    Терминология snip id 7251: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо… … Словарь-справочник терминов нормативно-технической документации

    Терминология Рекомендации по тушению полярных жидкостей в резервуарах: Биологически «жесткие» пенообразователи медленноразлагаемые и чрезвычайно медленноразлагаемые пенообразователи (в зависимости от способности разлагаться под действием… … Словарь-справочник терминов нормативно-технической документации

Начнем с определения. Пена - это одна из разновидностей дисперсий. Латинское слово dispersus означает рассеянный, разбросанный; диспергированием в технике называют процесс измельчения, дробления твердых, жидких или газообразных веществ. Мы не оговорились. Дробить, а точнее, рассеивать можно не только твердые и жидкие вещества, но и газообразные. Для этого газ, например воздух, нужно равномерно распределить в виде мелких пузырьков в жидкой или твердой среде (матрице).

В зависимости от того, какое вещество (в каком агрегатном состоянии) служит матрицей, а какое-диспергируется, дисперсии будут называться по-разному. Дисперсию жидкости в жидкости называют эмульсией , твердого вещества в жидкости - суспензией . Дисперсию газа в жидкости называют пеной , газа в твердом веществе - твердой пеной . Сам газ (воздух) тоже может быть матрицей. Дисперсия в нем жидкости называется туманом , а твердого вещества - пылью (дымом) .

В дальнейшем мы и будем называть пеной систему, состоящую из газа (воздуха) и жидкости, разделяющей воздушные ячейки. Но не всякая система газ-жидкость может быть отнесена к пенам. Если газа в жидкости мало, то пузырьки находятся далеко друг от друга, они имеют форму шара и свободно перемещаются в жидкости; это еще не пена. При большом содержании газа (свыше 80-90% по объему) пузырьки плотно прилегают друг к другу, деформируются и образуют подобную сотам структуру.

Множество любопытнейших явлений, наблюдаемых при пускании мыльных пузырей, объяснил известный английский ученый и популяризатор науки Чарльз Бойс. Он связывал образование мыльного пузырька с возникновением на его поверхности «растянутой упругой перепонки». Такая перепонка не может быть создана из чистой воды, так как вода абсолютно не упруга.

Зарождение в жидкости воздушного пузырька всегда приводит к увеличению ее поверхности. При этом в поверхностном слое разыгрываются сложные физические явления, объяснением которых занимались многие видные физикохимики.

Молекулы, находящиеся в поверхностном слое чистой воды, обладают особыми свойствами по сравнению с молекулами в объеме жидкости, поскольку силы межмолекулярного взаимодействия нескомпенсированы и у молекул этого слоя оказывается избыточный запас потенциальной энергии. Поэтому образование пены в чистой воде невозможно, так как это привело бы к резкому возрастанию избыточной потенциальной энергии.

В природе любая система стремится уменьшить запас потенциальной энергии, а любой самопроизвольно протекающий процесс направлен на снижение этого запаса. В результате газовый пузырек, зародившийся в воде, будет всплывать и разрушаться. Всплывать-вследствие резкого различия плотностей газовой и жидкой фаз, а разрушаться - под действием избыточной потенциальной энергии. Простейший способ продлить жизнь пузырька - использовать более вязкую, менее текучую жидкость. И верно, пленка вязкой жидкости существует уже заметное время. Кстати, именно поэтому в мыльную воду добавляют глицерин - он увеличивает вязкость раствора. Из такого раствора пузырьки не могут всплыть и остаются в объеме жидкости.

Но тут возникает противоречие: ведь чем больше вязкость жидкости, тем более устойчивые пленки она образует, но из вязкой жидкости труднее эту пленку получить. Замечательно решают эту проблему стеклодувы. Они сначала размягчают стекло, нагревая его до высокой температуры, выдувают из него пузыри (вспомните форму обычной колбы или лампы - это просто пузырь!), а затем дают этим пузырям охладиться. При этом вязкость стекла резко (в сотни миллионов раз!) повышается и пузырь стабилизируется. Это один путь. А есть и другой, основанный на способности некоторых веществ избирательно адсорбироваться на границе раздела фаз. Эти вещества (их называют поверхностно-активными) используют как пенообразователи при приготовлении устойчивых пен. Пузырьки в такой пене разделены упругими пленками.

Когда мы растягиваем упругую пленку, то затрачиваем работу на изменение формы молекул и расстояний между ними. Потенциальная энергия поверхностного слоя при этом возрастает не столь значительно, и воздушные пузырьки в таких жидкостях могут существовать длительное время.

Пузырек воздуха в жидкости имеет почти шарообразную форму, которую он сохраняет даже будучи изолированным после выхода из пенообразующего раствора.

Рассмотрим на примере одного элементарного пузырька, как образуется пена. Представим себе, что пузырек воздуха попал в раствор, содержащий пенообразователь. На границе пузырька с жидкостью сразу начнут скапливаться молекулы пенообразователя, так что вскоре пузырек оденется своеобразной «шубой» этого вещества, состоящей из одного слоя молекул пенообразователя. Всплывая, пузырек достигает поверхности жидкости, давит на нее и растягивает. Молекулы пенообразователя из раствора устремляются к растущей поверхности, предотвращая разрыв пленки жидкости. Таким образом, при выходе из воды пузырек оказывается окруженным оболочкой уже из двух монослоев пенообразователя, между которыми находится пленка жидкости. Когда в раствор вовлекается много воздуха, образующиеся пузырьки, всплывая, создают на поверхности жидкости пенный слой, толщина которого увеличивается в процессе перемешивания жидкости и газа. В конечном счете вся жидкая фаза превращается в пену.

Напомним: когда пленки между пузырьками (перегородки) еще достаточно толсты (содержат много жидкости), пузырьки сохраняют сферическую форму. По мере того как жидкость насыщается воздушными пузырьками, толщина перегородок уменьшается и форма пузырьков начинает постепенно изменяться из сферической в многогранную. В зависимости от формы газовых пузырьков Манегольд предложил разделять пены на два класса: сферические и многогранные.

Сферические пены отличаются высоким содержанием жидкости и в силу этого - малой устойчивостью. Поэтому их относят к метастабильным (условно стабильным). В нестабильных пенах наблюдается так называемый эффект Плато: жидкая фаза из перегородок удаляется, истекая под действием силы тяжести, и происходит быстрая коалесценция (от латинского coalesce - срастаюсь, соединяюсь) - слияние соприкасающихся газовых пузырьков.

Сущность явления коалесценции можно пояснить, используя простейшие понятия о взаимосвязи между поверхностью, поверхностной энергией и объемом.

Кубик любого твердого вещества с размерами 1 х 1 х 1 см имеет поверхность 6 см 2 . Путем дробления этот кубик можно превратить в мельчайшую пыль. Суммарный объем частиц будет по-прежнему 1 см 3 , но суммарная поверхность частиц может составлять уже квадратные метры. Даже десятки и сотни квадратных метров! Очевидно, что поверхностная энергия при этом тоже увеличится (заметим, за счет совершенной работы дробления). Но общая тенденция всех процессов состоит в стремлении уменьшить запас свободной энергии. Мельчайшие частицы слипаются, мельчайшие капли и воздушные пузырьки стремятся слиться в более крупные. Чем крупнее капля или пузырек, тем меньше соотношение поверхность: объем и тем меньше запас свободной поверхностной энергии. Слияние нескольких пузырьков в один, более крупный, и называется коалесценцией . Крупный воздушный пузырь стремительно всплывает и лопается - пена разрушается.

Многогранные пены отличаются малым содержанием жидкой фазы и характеризуются высокой стабильностью . В таких пенах отдельные пузырьки сближены и разделены тонкими «растянутыми упругими перепонками». Эти пленки в силу упругости и ряда других факторов препятствуют коалесценции газовых пузырьков. По мере утончения разделительных пленок пузырьки все плотнее сближаются, прилегают друг к другу и приобретают четкую форму многогранников.

Каждый пузырек в такой пене (если все пузырьки имеют одинаковый размер) обладает формой правильного пентагонального додекаэдра, т.е. двенадцатигранника, любая сторона которого представляет собой правильный пятиугольник. Эти многогранные пузырьки разделены тончайшими пленками жидкости, которые без внешнего импульса - механического воздействия или повышения температуры - могут сохраняться в течение длительного времени и противостоять излишнему истечению жидкой фазы.

Из сказанного очевидно, что пеной является не всякая дисперсная система типа газ-жидкость, а только ячеисто-пленочная, т. е. такая, в которой отдельные пузырьки связаны друг с другом разделяющими их пленками в общий каркас. В пене газовый пузырек не может свободно перемещаться ни в вертикальной, ни в горизонтальной плоскости. Он как бы «зажат» другими, прилегающими к нему пузырьками. Такая плотная упаковка достигается лишь при определенном соотношении объемов жидкой и газовой фаз. Это соотношение может быть найдено, если применить к пенам теорию упаковки шарообразных тел (в нашем случае-это газовые пузырьки). Для того чтобы образовалась сферическая пена, объем раствора пенообразователя нужно увеличить, насыщая его воздухом, в 3,8 раза по сравнению с первоначальным.

Если воздуха в растворе содержится меньше, то такую систему уже нельзя отнести к пенам. При большем насыщении пены воздухом пузырьки теряют сферическую форму и превращаются в многогранники, а разделяющие их пленки приобретают одинаковую толщину во всем объеме пены. Получается пространственная конструкция, в разрезе похожая на не раз виденные нами пчелиные соты. При получении пены такая конструкция возникает самопроизвольно; в ней на каждом ребре многогранника сходятся три тонкие пленки, образуя угол в 120°. Эта пена характеризуется минимальной поверхностной энергией, а следовательно, она наиболее устойчива. В такой системе броуновское движение ограничено, она приобретает некоторые свойства твердого тела (например, пена обладает определенной упругостью) и в то же время сохраняет ряд свойств, присущих компонентам пены: сжимается, как газ, а раствор в пленках имеет свойства обычной жидкости. Форму, подобную пятиугольным додекаэдрам, пузырьки пены приобретают, если их объемы (размеры) одинаковы. В большинстве пен отдельные пузырьки имеют разный объем, и, следовательно, их форма не будет идеальной, наиболее устойчивой. Такая пена быстрее разрушается.

Получение пены с заданным комплексом свойств - чрезвычайно важная прикладная проблема. Для оценки свойств пены, а значит, и ее пригодности для тех или иных целей существует множество общих и специальных характеристик. Основные показатели - кратность пены, ее дисперсность и устойчивость во времени. Во многих случаях важны ее структурно-механические свойства, а также теплопроводность, электропроводность, способность длительное время удерживать в массе твердые частицы, устойчивость при изменении температуры, облучении и даже оптические свойства пеномассы.

Чаще других пользуются характеристикой «кратность пены» , например, при оценке синтетических моющих средств, хотя однозначной связи между пенообразуюшей способностью и моющим действием порошков и жидкостей не обнаружено. Кратность пены Кр -это отношение объема пены Vп к объему раствора Vж; таким образом, эта характеристика показывает, сколько объемов пены можно получить из одного объема жидкости.

Определение кратности и устойчивости пены низкой и средней кратности осуществляется согласно ГОСТ Р 50588- 93. Пункт 5.2. В зависимости от величины кратности, получаемую из пенообразователей пену подразделяют на:
- пену низкой кратности (не более 20);
- пену средней кратности (от 20 до 200);
- пену высокой кратности (более 200).

Дисперсность пены характеризует средний размер воздушных пузырьков; чем меньше пузырьки, тем более дисперсна пена, при большом размере ячеек пену называют грубодисперсной. От дисперсности пены зависит скорость многих технологических процессов в микробиологической и химической промышленности, эффективность тушения пожаров, качество вспененной пластмассы, вкус мороженого и многих сортов конфет. Поэтому определение дисперсности является обязательным почти для всех производств, использующих пену.


НАЗНАЧЕНИЕ ПЕНООБРАЗОВАТЕЛЯ ПРИ ПОЛУЧЕНИИ ПЕНОБЕТОНА

Способ изготовления пенобетонов основан на особых свойствах пены, получаемой из специальных веществ, носящих название пенообразователей. Назначением пены является образование ячеистого скелета, который служит основанием для получения затем цементного скелета, такого же ячеистого строения, как и сама пена.

Так как пена и цементный раствор смешиваются совместно в мешалках, а цементный раствор затвердевает не сразу, то пена должна обладать особыми свойствами. Во-первых, пена должна быть достаточно упругой, чтобы не быть раздавленной тяжелым цементным раствором и, во-вторых, достаточно устойчивой против химического воздействия цемента.

Выбор пенообразователя в известной мере обусловливает как технологию производства пенобетона, так и технические и эксплуатационные характеристики получаемой продукции. Различные свойства пены по-разному влияют на структуру образования, формирования и твердения пенобетонной массы, отражаются на последующие эксплуатационные характеристики зданий и сооружений, построенных из пенобетона. Для оценки качества пенообразующих растворов и приготовленных из них пен, в разных отраслях промышленности применяют разные критерии. Это могут быть и абсолютный объем получаемой пены с единицы пенообразователя (очистка котловых вод), и время «живучести» пены (кулинария), и биоцидность (фармакология), и несущая способность пены (флотация), и вязкость пены (пылеподавление), и стойкость к тепловому воздействию (пожаротушение), и смачивающая способность (очистка поверхностей), и время сохранения эффективного пенообразования (аэрозольные пены) и т.д.

До настоящего времени нет универсального подхода к оценке эффективности того или иного пенообразователя. Для каждого конкретного случая применимости важны свои критерии оценки, свои, порой взаимоисключающие, характеристики.

Так для производства пенобетонов наиболее важны следующие параметры пены:

1) кратность – отношение первоначального объема пены к объему раствора пенообразователя затраченного на её получение;

2) стабильность – время распада единицы объема пены за единицу времени;

3) дисперсность – величина, характеризующая средний размер пузырьков и их распределение по объему пены;

4) плотность – соотношение жидкой и газовой фаз;

5) структурно механические свойства – способность определенное время сохранять первоначальную форму;

6) несущая способность – способность пузырьков пены без разрушения удерживать на своей поверхности определенное количество иных веществ;

7) влияние на изменение пластической вязкости ячеистобетонной композиции;

8) гидрофобизация или гидрофолизация внутреннего порового пространства ячеистого бетона;

9) влияние компонентов пенообразователя на гидратацию цемента;

10) совместимость пены с другими компонентами, применяемыми для изготовления пенобетона

(пластификаторы, ускорители, газовыделяющие, и гидрофобизирующие добавки и т.д.);

Знание и понимание механизма пенообразования, влияния отдельных факторов на характеристики пены обуславливают и степень успешности производства пенобетона в целом. А пренебрежение основополагающими и фундаментальными закономерностями в этой области (или простое незнание) порождают или плохое качество производимого пенобетона или нестабильность его характеристик.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПЕНООБРАЗОВАТЕЛЯМ ДЛЯ ПЕНОБЕТОНА

Любой пенообразователь, существующий на рынке производства пенобетона должен удовлетворять следующим требованиям:

- технико-экономические

Расход пенообразователя в денежном выражении не должен превышать 3$ на 1 кубический метр производимого пенобетона. При превышении этого показателя его применение становится экономически нецелесообразным из-за большого влияния на себестоимость продукции. Причем, является очевидным, что более дорогие пенообразователи не увеличат качество продукции в соответствии с увеличенной стоимостью. Этот критерий сразу отсекает все импортные пенообразователи и оставляет Российские.

- постоянство свойств, независимо от партии

Пенообразователь должен иметь одинаковые характеристики, независимо от партии и времени выпуска. В противном случае понадобится постоянная перенастройка технологического процесса производства или, если ее не делать, продукция будет получаться пониженного качества.

- достаточный срок хранения

Пенообразователь должен иметь срок хранения не меньше 1 года. Если срок хранения меньше, то придется покупать пенообразователь маленькими партиями и постоянно докупать новые. Это может быть проблематичным, в связи с большим временем доставки по железной дороге и удаленностью некоторых производств. Также, при окончании строительного сезона и значительном снижении объема производства, невостребованный пенообразователь может вообще испортится до следующего сезона.

- малый расход

Расход пенообразователя не должен превышать 1,5 литров на 1 куб.м. производимого пенобетона. Это необходимо по двум причинам. Первая: для большего количества продукции получаемой из одной загрузки пеногенератора. Вторая: для меньшего влияния на процесс твердения пенобетона. Как известно, при большом количестве пенообразователя использованного для приготовления пенобетона, может увеличиваться время затвердевания пенобетона, понижаться его прочность, увеличиваться усадка.

- простота приготовления

Пенообразователь не должен быть многокомпонентным. Увеличение количества составляющих усложняет процесс приготовления рабочего раствора пенообразователя и снижает точность дозирования составляющих. Однокомпонентные пенообразователи имеют преимущества, особенно, при использовании в строительных условиях. А во избежание засорения трубопроводов и накопления осадка в рабочих емкостях, необходимо, чтобы пенообразователь был хорошо растворим в воде.

- высокая кратность и стойкость

Кратность пенообразователя и стойкость пены - это основные физические свойства технической пены, которые характеризуют качество пенообразователя. Они зависят от вида пенообразователя, устройства приготовления пены, которые в значительной мере влияют на физико-механические свойства поризованного бетона. Кратность пенообразователя, должна быть не менее 10. Это необходимо для уменьшения отрицательного действия пенообразователей на гидратацию вяжущего. Кратность пенообразователя определяется по простой формуле: надо объем полученной пены разделить на объем исходного пенообразователя. Зачастую пенообразователи поставляются в концентрированном виде и требуют разбавления водой. Тогда кратность определяется: объем полученной пены деленный на объем исходного водного раствора. На прочность пенобетона оказывает влияние количество вводимой в поризуемую смесь воды с пеной, которая приводит к дополнительному образованию капиллярных пор. Уменьшение В/Т (водо-твердое соотношение см. словарь) в поризуемом растворе изменяет значение С, что приводит к увеличению плотности получаемого пенобетона. Поэтому, в технологии пенобетона некоторые производственники используют относительно высокое значение В/Т. За счет такого технологического приема, увеличивая значение С, представляется возможным получить пенобетон меньшей плотности, уменьшая отрицательное воздействие пенообразователя на гидратацию вяжущего. Использование пен высокой кратности (так называемых условно "сухих пен") приводит к перераспределению воды из твердеющего раствора в межпленочные слои пузырьков пены. Такой эффект наблюдается при использовании определенных видов пенообразователей и пен повышенной вязкости.

- соответствие санитарно-гигиеническим нормам

Пенообразователи должны быть нетоксичны, невзрывоопасны и, согласно классификации по ГОСТ 12.1.007-76, относится к 3, 4-ому классу малоопасных веществ, и отвечать санитарно- и радиационно-гигиеническим требованиям. Биоразлагаемость разрабатываемых ПО должна удовлетворять требованиям предъявляемых при использовании ПАВ (Поверхностно активных веществ) в производстве строительных материалов.

- достаточная стойкость пены в растворе

Это один из важнейших показателей качества технической пены. Этот технологический параметр характеризуется коэффициентом стойкости пены в цементном тесте при лабораторных исследованиях, а в производственных условиях, коэффициентом использования пены. Значение этих коэффициентов отображает не только совместимость технической пены со средой твердеющего раствора, но и показывает объемную долю использования пены в приготовлении поризованного раствора. В лабораторных исследованиях определение коэффициента стойкости пены производится вручную при смешивании в течение 1 минуты в равных объемах (1 л) цементного теста (В/Ц=0,4) и пены, с последующим измерением полученного объема поризованного теста. Коэффициент стойкости пены в цементном тесте рассчитывают как результат среднего арифметического трех замеров. Проще говоря, берется 1 литр пены и 1 литр цемента. В течение 1 минуты они перемешиваются, и после этого измеряется объем полученной пеномассы. Объем полученной пеномассы делим на 2 и получаем некое число, назовем его С.

Получаемую техническую пену можно считать удовлетворительной, если значение С от 0,8 до 0,85, а качественной: С = 0,95. Например, на основе пенообразователя Ареком можно приготовить пену с С = 0,96. Этот показатель стойкости пены связан с плотностью и прочностью получаемого пенобетона. Чем выше коэффициент стойкости пены, тем меньший объем пены необходим для получения пенобетона требуемой плотности и, соответственно, необходим меньший расход пенообразователя. Пенообразователь, как и любая добавка, в запредельном количестве на начальной стадии замедляет и может совсем приостановить твердение вяжущего. Количество пенообразователя, перешедшего в жидкую систему твердеющего вяжущего, зависит от С. Количество пенообразователя в жидкой фазе вяжущего можно определить через С. Поэтому необходимо использовать пены более высокой кратности, уменьшая объем пенообразователя, вводимого в бетонную смесь, но, сохраняя высокое значение С. Эти технологические параметры пены находятся во взаимосвязи и в противоречии. Поэтому, для каждого состава пенообразователя и технической пены необходимо определять приоритетное их влияние на технологические и физико-механические свойства пенобетона.

- стойкость смеси во времени

Стойкость поризованной смеси во времени характеризуется осадкой пенобетонной смеси. Можно предположить, что влияние на процесс осаждения оказывает изменение рН среды твердеющего бетона и перераспределение ПАВ (поверхностно активное вещество - пенообразователь) в дисперсной системе. При недостаточной структурной прочности межпоровых перегородок (результат действия ПАВ) происходит их прорыв и слияние. Такие изменения поризованной смеси во времени измеряют высотой осадки поризованной смеси к начальной ее высоте. Чем меньше осадка пенобетонной смеси, тем качественней пенообразователь и приготовленная техническая пена.

Основные критерии оценки свойств пенообразователей: концентрация пенообразователя при приготовлении стойкой пены; кратность пены и коэффициент стойкости пены в вяжущем растворе. Эти показатели необходимо использовать для первоначальной оценки качества пенообразователя.

По установившейся традиции в конце книги или журнальной статьи помещают список литературы, в которой можно найти дополнительные сведения по тем или иным разделам темы. В этом отношении наша задача решается предельно просто. Мы назовем только две, но очень обстоятельные книги: В. К. Тихомиров. «Пены. Теория и практика их получения и разрушения» (М., Химия, 1983). Небольшая книга содержит информацию по всем вопросам, перечисленным в названии, обширный список литературы, включающий более 650 оригинальных работ, монографий, патентов. Вторая «молодая» книга принадлежит перу докторов химических наук П. М. Круглякову и Ю. Г. Ровину - это «Физикохимия черных углеводородных пленок» (М., «Наука», 1978).

Пена – это скопление пузырьков, которое способствует , главным образом, за счет эффекта поверхностного тушения. Пузырьки возникают при смешивании воды с пенообразователем. Пена легче самого легкого воспламеняющегося нефтепродукта, поэтому при подаче на горящий нефтепродукт она остается на его поверхности.




Виды пены по кратности:

  • пены низкой кратности – кратность пены от 4 до 20 (получают стволами СВП, пеносливными устройствами);
  • пены средней кратности – кратность пены от 21 до 200 (получают генераторами ГПС);
  • пены высокой кратности – кратность пены более 200 (получают путем принудительного нагнетания воздуха).


Область применения. Достоинства и недостатки

Пена широко применяется для тушения пожаров твердых (пожары класса А) жидких веществ (пожары класса В), не вступающих во взаимодействие с водой, и в первую очередь – для тушения пожаров нефтепродуктов.





Химическая пена о бразуется смешиванием щелочи (обычно бикарбоната натрия) с кислотой (как правило, сульфата алюминия) в воде. Эти вещества содержатся в одном герметичном контейнере. Чтобы сделать пену более прочной и продлить срок ее службы, к ней добавляется стабилизатор.


При взаимодействии указанных химических веществ образуются пузырьки, наполненные углекислым газом, который в данном случае практически не обладает никакой огнетушащей способностью; его назначение – заставить пузырьки всплывать.

Порошок может храниться в емкостях и вводиться в воду в процессе борьбы с пожаром через специальную воронку или каждое из двух химических веществ может быть предварительно перемешано с водой, в результате чего образуется раствор сульфата алюминия и раствор бикарбоната натрия.

Эта пена образуется из пенного раствора, получаемого при смешивании пенообразователя с водой. Пузырьки возникают при турбулентном перемешивании воздуха с пенным раствором. Как следует из самого названия пены, ее пузырьки заполнены воздухом. Качество пены зависит от степени перемешивания, а также от исполнения и эффективности используемого оборудования, а ее количество – от конструкции этого оборудования.


Существует несколько типов воздушно-механической пены, одинаковых по природе, но имеющих разную огнетушащую эффективность. Ее пенообразователи производят на основе протеина и поверхностно-активных веществ. Поверхностно-активные вещества – это большая группа веществ, включающая моющие средства, смачиватели и жидкое мыло.



Ограничения в применении пены

При правильном использовании пена – эффективное огнетушащее вещество. Тем не менее существуют определенные ограничения в ее применении, которые перечислены далее.


  1. Поскольку пена представляет собой водный раствор, она проводит электричество, поэтому ее нельзя подавать на электрооборудование, находящееся под напряжением.
  2. Пену, так же как и воду, нельзя применять для тушения горючих металлов.
  3. Многие типы пены нельзя употреблять с огнетушащими порошками. Исключение из этого правила составляет «легкая вода», которая может использоваться с огнетушащим порошком
  4. Пена не годится для тушения пожаров, связанных с горением газов и криогенных жидкостей. Но высоко-кратная пена применяется при тушении растекающихся криогенных жидкостей для быстрого подогрева паров и уменьшения опасности, сопутствующих такому растеканию

  1. Несмотря на существующие ограничения в применении, пена очень эффективна при борьбе .
  2. Пена - очень эффективное огнетушащее вещество, которое, кроме того, обладает и охлаждающим эффектом.
  3. Пена создает паровой барьер, препятствующий выходу воспла­меняющихся паров наружу. Поверхность цистерны может быть покрыта пеной для защиты ее от пожара в соседней цистерне.


4. Пена может быть использована для тушения пожаров класса А в связи с наличием в ней воды. Особенно эффективна «легкая вода».

5. Пена – эффективное огнетушащее вещество для покрытия расте­кающихся нефтепродуктов. Если нефтепродукт вытекает, нужно попытаться закрыть клапан и таким образом прервать поток. Если это невозможно сделать, надо преградить путь потоку при помощи пены, которую следует подавать в район пожара для его тушения и затем для создания защитного слоя, покрывающего просачивающуюся жидкость.

6. Пена – наиболее эффективное огнетушащее вещество для тушения пожаров в больших емкостях с .

7. Для получения пены может использоваться пресная или жесткая или мягкая вода.

Отдельного внимания заслуживает и компрессионная пена, которая очень хорошо себя зарекомендовала при тушении пожаров.

Компрессионная пена (compressed air foam system, CAFS) – технология, используемая в пожаротушении для доставки огнетушащей пены с целью тушения возгорания или защиты зоны, где отсутствует горение, от воспламенения.

Компрессионная пена получается из стандартной насосной установки, которая имеет точку ввода сжатого воздуха в пенообразователь для формирования пены. Кроме того, сжатый воздух также добавляет энергию в струю, которая позволяет увеличить дальность доставки ОТВ по сравнению со стандартными пеногенераторами или стволами.

При использовании компрессионной пены, эффективность огнетушащего вещества составляет порядка 80%. Такой показатель возможен благодаря особым физическим свойствам компрессионной пены, а именно адгезивности. При тушении пожара, ствольщик получает в свой арсенал новые возможности. При нанесении на потолок и стены, пена изолирует смежные помещения от воздействия высоких температур, при этом пена долго держится даже на вертикальных поверхностях: от одного часа на металлической до двух-трех часов на деревянной. Каждый пузырь компрессионной пены имеет стойкую связь с соседними, что обуславливает высокую стойкость пены. В результате получается тонкое (около 1-2 сантиметров) и прочное «одеяло», которое буквально «укрывает» горящую поверхность, прекращая доступ кислорода в очаг возгорания.

Готовая компрессионная пена подаётся по напорным пожарным рукавам диаметром 38 или 51 мм под рабочим давлением 7 ÷ 10 кгс/см 2 .

Физические параметры компрессионной пены и, соответственно, огнетушащие свойства пены – изменяются посредством изменения соотношения ингредиентов. Может вырабатываться «сырая» (тяжёлая) пена с соотношением от 1: 5 (вода: воздух) и «сухая» (лёгкая) пена с соотношением до 1: 20 (вода: воздух).


Подача компрессионной пены с соотношением 1: 10 (вода: воздух) на вертикальные поверхности

(металлическую дверь, кирпичную стену).

Вместе с тем, пена обладает и лучшими свойствами воды – она охлаждает очаг, а благодаря смачивателям, включенным в ее состав – проникает в поры и трещины поверхности, предотвращая тление материала и его повторное возгорание.

Главные преимущества компрессионной пены: быстрый сбив пламени и снижение температуры, сокращение времени тушения в 5 ÷ 7 раз (на 500 ÷ 700 % !!!), снижение расхода воды в 5 ÷ 15 раз (на 500 ÷ 1500 %).

Пенобразователи

Пенообразователь (пенный концентрат) -концентрированный водный раствор стабилизатора пены (поверхностно-активного вещества), образующий при смешивании с водой рабочий раствор пенообразователя.

Пенообразователи предназначены для получения с помощью пожарной техники воздушно-механической пены или растворов смачивателей, используемых для тушения пожаров классов А (горение твердых веществ) и В (горение жидких веществ).

Пенообразователи в зависимости от химического состава (поверхностно-активной основы) подразделяются на:

  • синтетические (с),
  • фторсинтетические (фс ),
  • протеиновые (п),
  • фторпротеиновые (фп ).

Пенообразователи в зависимости от способности образовывать огнетушащую пену на стандартном пожарном оборудовании подразделяются на:

  • пенообразователи для тушения пожаров пеной низкой кратности (кратность пены от 4 до 20);
  • пенообразователи для тушения пожаров пеной средней кратности (кратность пены от 21 до 200);
  • пенообразователи для тушения пожаров пеной высокой кратности (кратность пены более 200).


Самыми популярными и недорогими, и в то же время эффективными, на сегодняшний день считаются пенообразователи с маркировкой ПО-6 и ПО-3. Цифры на маркировке говорят об уровне концентрации пенообразователя в рабочем растворе (6 или 3 литра на определенный объем воды). Хранить такую продукцию следует в отапливаемых помещениях. Замерзая, пенообразователь не теряет своих свойств и вновь готов к эксплуатации после размораживания, но в условиях возникшего пожара времени на приведение его в нужную консистенцию может просто не быть. Оба вида относятся к числу биоразлагаемых и абсолютно безопасны при хранении и транспортировке.

ХАРАКТЕРИСТИКА НАИБОЛЕЕ РАСПРОСТРАНЁННЫХ ПЕНООБРАЗОВАТЕЛЕЙ

ПО-1 Водный раствор нейтрализованного керосинового кон­такта 84±3%, костный клей для стойкости пены 5 ± 1 % синтетический этиловый спирт или концентрированный этиленгликоль 11 ± 1 %. Температура замерзания не пре­вышает -8 °С. Является основным пенообразующим средством для получения воздушно-механической пены любой кратности.

При тушении нефтей и нефтепродуктов концентрация водного раствора ПО-1 принимается 6%. При тушении других веществ и материалов используют растворы с концентрацией 2 – 6 %.

ПО-3А Водный раствор смеси натриевых солей вторичных ал­килсульфатов. Содержит 26±1 % активного вещества. Температура замерзания не выше – 3°С. При примене­нии разбавляют водой в пропорции 1: 1 с использо­ванием дозирующей аппаратуры, рассчитанной на пено­образователь ПО-1. Для получения пены применяют водный раствор с концентрацией 4 – 6 %.
ПО-6К Изготовляют из кислого гудрона при сульфировании гидроочищенного керосина. Содержит 32 % активного вещества. Температура замерзания не выше -3°С. Для получения пены при тушении нефтепродуктов используют водный раствор с концентрацией 6 %. В других случаях концентрация водного раствора может быть меньше.
«Сампо» Состоит из синтетического поверхностно-активного вещества (20%), стабилизатора (15%), антифризной добавки (10%) и вещества, снижающего коррозионное действие состава (0,1 %). Температура застывания – 10°С. Для получения пены используют водный раствор с концентрацией 6 %. Применяют при тушении нефти, неполярных нефтепродуктов, резинотехнических изделий древесины, волокнистых материалов, в стационарны системах пожаротушения и для защиты технологических установок.

Пенообразователи целевого применения.

ТЭАС-НТ – синтетический, биологически разлагаем. Предназначен для получения огнетушащей пены низкой и средней кратности в условиях низких температур.



ПО-6НП – синтетический, биологически разлагаем. Предназначен для тушения пожаров нефтепродуктов, ГЖ, для применения с морской водой. «Морпен» – синтетический, биологически разлагаем. Предназначен для получения огнетушащей пены низкой, средней и высокой кратности с использованием как пресной, так и морской воды.


ПО-6МТ – синтетический, морозоустойчивый, биологически разлагаем. Предназначен для получения огнетушащей пены низкой, средней и высокой кратности.

Интересное видео по компрессионной пене